#### **Unit 4 Review**

Vocabulary: explain each in your own words

## **Bond types**

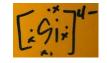
a. covalent bond, a bond between two nonmetals where electrons are shared (localized)

b. ionic bond, a bond between a cation and anion where electrons are transferred (from cation to anion)

e metallic bond, a bond between two metals where electrons are shared and create a "sea of electrons" (delocalized)

2. Complete the following table

|                                                                | ionic bonds                                                                                                                            | covalent bonds                                                                                     | metallic bonds                                                                                                                    |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| types of elements<br>involved<br>(metal, nonmetal)             | Metal + Nonmetal                                                                                                                       | Nonmetal + Nonmetal                                                                                | Metal + Metal                                                                                                                     |
| what happens to the e-<br>(give/take or share or sea<br>of e-) | Transferred from metal<br>to nonmetal – locked<br>into place                                                                           | Shared between the two<br>nonmetals – locked into<br>place                                         | Shared between metals<br>with delocalized<br>(mobile) electrons                                                                   |
| List all the properties of<br>compounds with these<br>bonds    | High Melting Point<br>High Boiling Point<br>Crystalline Solid<br>Brittle<br>Conducts electricity<br>when dissolved<br>Easy to dissolve | Low Melting Point<br>Low Boiling Point<br>Solid, Liquid, or Gas<br>Does NOT conduct<br>electricity | High Melting Point<br>High Boiling Point<br>Solid Lattice Structure<br>Good conductor of heat<br>Good conductor of<br>electricity |


## 4. Describe the octet rule, what do we use if for?

The octet rule tells us that all atoms want to have a full outer energy level of 8 valence electrons to act like a noble gas and become stable. Hydrogen and Helium follow the duet rule because they only have one energy level.

- 5. How many valence electrons are there in the following atoms? a. arsenic 5 b. iodine 7 c. silicon 4
- 6. What ions would the following atoms form? (Draw them below)a. phosphorousb. chlorinec. silicon







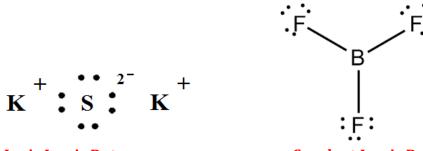
d. sulfur <mark>6</mark>

d. selenium

7a. Why do atoms form ions? Are the ions stable?

To become stable and fullfil the octet rule (full outer energy level). Ions are stable.

7b. Circle the correct answers:


Cations **(lose e- / gain e-)** to become stable and this makes them (**bigger/smaller)** than their neutral atoms. Anions **(lose e- / gain e-)** to become stable and this makes them (**bigger/smaller)** than their neutral atoms.

- 8. How many hydrogen atoms would be expected to bond covalently to each of the following atoms: (draw it out below)
- a. Ge -4 H'sb. S 2 H'sc. Br -1 Hd. Si 4 H'se. P 3 H's9. $K_2S$  (Ionic) $BF_3$  (Covalent) $NI_3$  (Covalent)KCl (Ionic)

a. Draw the Lewis Dot structures for the above compounds.

b. Are the above compounds ionic or molecular? Why?

c. Do the above compounds have ionic or covalent bonds? Why?



Ionic Lewis Dot

**Covalent Lewis Dot** 

10a. What is necessary for an ionic compound to conduct electricity? Explain why. They need to be dissolved in water in order for the ions to move freely.

10b. Why are metals good conductors of electricity? Share to create a sea of electrons – electrons are delocalized and move freely within the metal.

# Choose 4 compounds from below and draw the Lewis dot structure and if it's molecular, name the VSEPR shape, for each. Pick 2 molecular and 2 ionic compounds.

| _ 11. write the following compounds formula:           |                         |  |
|--------------------------------------------------------|-------------------------|--|
| Tetraarsenic decaoxide As <sub>4</sub> O <sub>10</sub> | Magnesium sulfide       |  |
| Nitrogen Gas N2                                        | Ammonium nitrate        |  |
| Boron tribromide BBr <sub>3</sub>                      | Manganese (III) cyanide |  |
| Dichlorine pentaoxide Cl <sub>2</sub> O <sub>5</sub>   | Phosphorus tribromide   |  |
| Potassium iodide <mark>KI</mark>                       | Xenon difluoride        |  |
| Sodium bromide NaBr                                    | Disulfur dichloride     |  |
| Sodium carbonate Na <sub>2</sub> CO <sub>3</sub>       | Sulfur trioxide         |  |
| Tin (IV) chlorite Sn(ClO <sub>2</sub> ) <sub>4</sub>   | Copper (II) oxide       |  |
| Calcium oxide CaO                                      | Cadmium oxide           |  |

## 12. Write the following compounds name:

| NaCl Sodium Chloride                                     | P <sub>3</sub> O <sub>3</sub>        |
|----------------------------------------------------------|--------------------------------------|
| BaCl <sub>2</sub> Barium Chloride                        | MgCO <sub>3</sub>                    |
| AlF <sub>3</sub> Aluminum Fluoride                       | Fe(ClO <sub>4</sub> ) <sub>3</sub>   |
| FeO Iron (II) Oxide                                      | Be(CH <sub>3</sub> COO) <sub>2</sub> |
| KI Potassium Iodide                                      | N <sub>2</sub> O <sub>5</sub>        |
| AgCl Silver Chloride                                     | $SnS_2$                              |
| S <sub>4</sub> N <sub>4</sub> Tetrasulfur Tetranitride   | CoO                                  |
| (NH <sub>4</sub> ) <sub>3</sub> PO <sub>4</sub> Ammonium | $CrCl_3$                             |
| Phosphate                                                | SnCl <sub>2</sub>                    |
| OF <sub>2</sub> Oxygen Difluoride                        | $Co_2O_3$                            |
| SnCl <sub>4</sub> Tin (IV) Chloride                      |                                      |

| Bond type    | Draw the dot structure be careful do they share e- or give/get e-                                                  |
|--------------|--------------------------------------------------------------------------------------------------------------------|
| (Circle one) | <b><u>If covalent</u></b> - label the partial charges over each bond with $\delta$ + or $\delta$ – in the molecule |
|              | If ionic- don't label the partial charges!                                                                         |

| CBr4            | <u>covalent or ionic</u><br><u>polar or non-polar</u> | $CBr_{4} : Br:$ $\overset{(4+7)(4)}{= 32} : Br: C:Br: \delta-1$ Carbon Tetrabromide : Br:                                                                                                                                                                           |
|-----------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 012             | <u>covalent or ionic</u><br><u>polar or non-polar</u> |                                                                                                                                                                                                                                                                     |
| NF <sub>3</sub> | <u>covalent or ionic</u><br>polar or non-polar        |                                                                                                                                                                                                                                                                     |
| GaCl₃           | <u>covalent or ionic</u><br>polar or non-polar        | [Cl] <sup>-1</sup> [Ga] <sup>3+</sup> [Cl] <sup>-1</sup><br>[Cl] <sup>-1</sup><br>Gallium should appear "naked" because it gave all of its electrons to Chlorine.<br>Chlorine should have seven dots with one x to show where it took one of Gallium's<br>electron. |

What is the strongest intermolecular force in each molecule?

| a. | CaS               | Hydrogen bonding, Dipole-Dipole, London dispersion, Ionic- no IMF (circle one) |
|----|-------------------|--------------------------------------------------------------------------------|
| b. | SeBr <sub>2</sub> | Hydrogen bonding, Dipole-Dipole, London dispersion, Ionic- no IMF (circle one) |
| c. | NF <sub>3</sub>   | Hydrogen bonding, Dipole-Dipole, London dispersion, Ionic- no IMF (circle one) |