\qquad Per \qquad

Making Dilutions

Dilute (verb) - to make a solution less concentrated or weaker by adding water or another solvent to it

$$
\mathbf{M}_{1} \mathbf{V}_{\mathbf{1}}=\mathbf{M}_{2} \mathbf{V}_{2} \quad \mathrm{M}=\text { Molarity } \quad \mathrm{V}=\text { Volume }
$$

Example: If the initial molarity is 5.0 M , the initial volume is 6 L , and the final volume is 4 L , what is the final molarity?

$$
(5.0 \mathrm{M})(6 \mathrm{~L})=\left(\mathrm{M}_{2}\right)(4 \mathrm{~L}) \quad \mathrm{M}_{2}=7.5 \mathrm{M}
$$

Example: If you add 2 L to 7.6 L of a 4 M solution, what will the new molarity be?

$$
(4 \mathrm{M})(7.6 \mathrm{~L})=\left(\mathrm{M}_{2}\right)(9.6 \mathrm{~L}) \quad \mathrm{M}_{2}=3.16 \mathrm{M}
$$

If you start with 2 L of a 15 M solution, what does the new volume need to be to make it 12 M ?

If you take 15.6 L of a 32 M solution and make it 28 L , what is the new molarity?

Dilute 1.0 L of 5.0 M HCL to 3.0 M . What is the final volume?
How much water would you need to add?

Dilute 1.0 L of 5.0 M NaCl to 2.0 M . What is the final volume?
How much water would you need to add?

How would you prepare 100 mL of a $0.500 \mathrm{M} \mathrm{HNO}_{3}$ solution if you have a 12.0 M stock solution of HNO_{3} ?

Add 4.17 mL of the 12.0 M stock to 995.8 mL of water

How would you prepare 575 mL of a 0.34 M NaCl solution if you have a 1.0 M stock solution of NaCl ?

