Name ____

Specific Heat Capacity Worksheet

•Enthalpy can often be thought of as "the internal energy of a system, and the energy required to create it".

•Change in enthalpy (ΔH) is the difference in enthalpy between one system and another.

•Remember, the change in enthalpy [Δ H] is the **heat energy gained or lost during a process** at constant pressure.

•[q] is often used to symbolize energy transfers, and $q = \Delta H$ at constant pressure. Thus.....

$q = \Delta H = mC\Delta T$

 Convert each of the following quantities. Remember that [1 calorie = a. 240 Joules to calories 	4.184J], and [1 Calorie = 10 ³ calories] 57 cal
b. 1850 Calories to calories	1.85 x 10 ⁶ cal
c. 4.25 Calories to Joules	1.78 x 10⁴ J
2. How much heat is required to raise the temperature of 32.4g of merc is 0.1395 J/g $^{\circ}$ C.	ury from 20.0 °C to 98.0 °C? The specific heat of mercury
	+353J
3. 4490 J is absorbed by 258g of water. What is the ΔT of the water?	
	4.16 °C
4. What is the specific heat of a substance if 250 cal are required to rai (convert cal to joules)	se the temperature of 2.5g from 10.0 °C to 22.5°C?
	8.0cal/g°C or 33J/gK
5. Find the final temperature if 1932.7 J of energy is added to 27.5g of	water at 21.1 °C.
	37.8 C
6. A rectangular aquarium, 20.3cm by 47.7cm by 84.7cm, is filled with raise the temperature of the water to 24.9 °C?	water at15.4 °C. How much energy in Joules is required to (Hint:1cm ³ = 1 mL, and 1 mL = 1g)
	+3.3x10 ⁶ J
7. A lead mass is heated and placed in a foam cup calorimeter containing increases to 20.0 °C. How many joules of heat are released by the leater the second	ng 40.0 mL of water at 17.0 °C. The temperature d?

Hint: (solve the equation for the joules of heat released by the water because it is the same for lead)

Per____

Combination Problems Worksheet					
Given Inform	nation for H ₂ O	$\Delta H_{fus} = 6.01$	kJ/mol	$\Delta H_{vap} = 40.8 \text{ k}$	J/mol
c _(solid) of H ₂ O =	= 2.06 J/g°C	$c_{(liquid)}$ of H_2O	= 4.18 J/g°C	$c_{(gas)}$ of $H_2O = 7$	I.87 J/g°C
1. A cup contains about 450 grams of water. How many joules are released when the water is cooled from 25°C to 4°C? Circle the formula you use: $q = m x C x \Delta T$ or $Q=m x \Delta H$					
					q = -39501 J
2. How many jou	les are required to	melt 100 grams of H ₂	0?		
Circle the formul	a you use: <u>q = m :</u>	$(C \times \Delta I)$ or $Q = m \times \Delta$	<u>H</u>		
					Q = 33.66 kJ
3. At what tempe	rature will water fr	eeze?	melt? va	oorize?	condense?
 Draw a quic Label the te Circle the lin Use the cha Write th Decide Decide I Solve each Make sure Add up the 	k Heating Curv mperature for I ne segments th art provided to s be temperature which state(s) which equation Jse Q=mΔH for Jse q=mcΔT for segment of the all the energies energies to get	Velting Point and E at are involved in t separate your calcu (s) for each segme of matter exist at e to use at each se or the phase chan or the temperatur problem s are in the same your final answer	Boiling Point (O°C a the problem being a ulations for each se ent each segment gment: ges e changes) e units (kJ!!)	and 100°C for wat asked gment	er)
How many joules are required to heat 200 grams of water from 25 $^{\circ}$ C to 125 $^{\circ}$ C2. The heat canacity of steam is 1.87. $1/a^{\circ}$ C					
Temp change	state of water	Formula to use	Heat change (KJ)	1 KJ=1000J	
25 °C to 100 °C	Liquid	$\mathbf{q}_1 = \mathbf{m} \mathbf{x} \mathbf{C} \mathbf{x} \Delta \mathbf{T}$			

100 ºC	$Liquid \to Gas$	$Q_2=m \Delta H_{vap}$	
100 ⁰C to 125 ⁰C	Gas	q₃ = m x C x ∆T	
		Total	

How many	/ KJ are given off wher	120 grams of water ar	re cooled from 25 °C to -25°C?	The heat capacity	$\sqrt{100}$ of ice is 2.1 J / a^{-0} C.
					,

Temp change	state of water	formula	Heat change (KJ)
25 °C to 0°C	Liquid	$q_1 = m \mathbf{x} \mathbf{C} \mathbf{x} \Delta \mathbf{T}$	
		Total	

-59 kJ

How many KJ are required to heat 45 grams of water from 45 °C to 105 °C?

Temp change	state of water	formula	Heat change (KJ) 1 KJ=1000J
		Total	

113 kJ

How many KJ are required to cool 800 grams of water from 76 °C to -1 °C? Is this process exo or endothermic?

Temp change	state of water	formula	
		Total	

More Combination Problems - Side A

1. How many KJ are required to heat 45 grams of water from -5 °C to 105 °C? Is this process exothermic or endothermic?

136.72KJ

2. How many kilojoules of heat are required to change the temperature of 246g H_2O from 45°C to 123°C? Is this process exothermic or endothermic?

More Combination Problems - Side B

3. How much heat energy is needed to raise the temperature of 50.0 grams of ice at -10.0 C to form steam at 120.0 C?

153 KJ

4. Calculate the amount of heat lost by 120.0 grams of steam at 150.0 C to form ice at -15.0 C.