\qquad
\qquad

Specific Heat Capacity Worksheet

- Enthalpy can often be thought of as "the internal energy of a system, and the energy required to create it".
- Change in enthalpy $(\Delta \mathrm{H})$ is the difference in enthalpy between one system and another.
\bullet Remember, the change in enthalpy $[\Delta \mathrm{H}]$ is the heat energy gained or lost during a process at constant pressure.
$\bullet[q]$ is often used to symbolize energy transfers, and $q=\Delta H$ at constant pressure. Thus.....

$q=\Delta H=m C \Delta T$

1. Convert each of the following quantities. Remember that [1 calorie $=4.184 \mathrm{~J}$], and [1 Calorie $=10^{3}$ calories]
a. 240 Joules to calories
b. 1850 Calories to calories $\quad 1.85 \times 10^{6} \mathrm{cal}$
c. 4.25 Calories to Joules
$1.78 \times 10^{4} \mathrm{~J}$
2. How much heat is required to raise the temperature of 32.4 g of mercury from $20.0^{\circ} \mathrm{C}$ to $98.0^{\circ} \mathrm{C}$? The specific heat of mercury is $0.1395 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.
3. 4490 J is absorbed by 258 g of water. What is the $\Delta \mathrm{T}$ of the water?
4. What is the specific heat of a substance if 250 cal are required to raise the temperature of 2.5 g from $10.0^{\circ} \mathrm{C}$ to $22.5^{\circ} \mathrm{C}$? (convert cal to joules)
$8.0 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$ or $33 \mathrm{~J} / \mathrm{gK}$
5. Find the final temperature if 1932.7 J of energy is added to 27.5 g of water at $21.1^{\circ} \mathrm{C}$.
37.8 C
6. A rectangular aquarium, 20.3 cm by 47.7 cm by 84.7 cm , is filled with water at $15.4^{\circ} \mathrm{C}$. How much energy in Joules is required to raise the temperature of the water to $24.9^{\circ} \mathrm{C}$?
(Hint: $1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$, and $1 \mathrm{~mL}=1 \mathrm{~g}$)
$+3.3 \times 10^{6} \mathrm{~J}$
7. A lead mass is heated and placed in a foam cup calorimeter containing 40.0 mL of water at $17.0^{\circ} \mathrm{C}$. The temperature increases to $20.0^{\circ} \mathrm{C}$. How many joules of heat are released by the lead?
Hint: (solve the equation for the joules of heat released by the water because it is the same for lead)

Combination Problems Worksheet

Given Information for $\mathrm{H}_{2} \mathrm{O}$:
$\mathrm{C}_{\text {(solid) }}$ of $\mathrm{H}_{2} \mathrm{O}=2.06 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
$\Delta \mathrm{H}_{\text {fus }}=6.01 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}_{\text {(iquid) }}$ of $\mathrm{H}_{2} \mathrm{O}=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
$\Delta \mathrm{H}_{\text {vap }}=40.8 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}_{\text {(gas) }}$ of $\mathrm{H}_{2} \mathrm{O}=1.87 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

1. A cup contains about 450 grams of water. How many joules are released when the water is cooled from $25^{\circ} \mathrm{C}$ to $4^{\circ} \mathrm{C}$?

Circle the formula you use: $q=m \times C \times \Delta T$ or $Q=m \times \Delta H$

$$
q=-39501 \mathrm{~J}
$$

2. How many joules are required to melt 100 grams of $\mathrm{H}_{2} \mathrm{O}$?

Circle the formula you use: $q=m \times C \times \Delta T$ or $Q=m \times \Delta H$

$$
\mathrm{Q}=33.66 \mathrm{~kJ}
$$

3. At what temperature will water freeze? \qquad melt? \qquad vaporize? \qquad condense? \qquad

Steps for solving Combined problems (problems that use both equations):

1. Draw a quick Heating Curve
2. Label the temperature for Melting Point and Boiling Point $\left(\mathrm{O}^{\circ} \mathrm{C}\right.$ and $100^{\circ} \mathrm{C}$ for water)
3. Circle the line segments that are involved in the problem being asked
4. Use the chart provided to separate your calculations for each segment

- Write the temperature(s) for each segment
- Decide which state(s) of matter exist at each segment
- Decide which equation to use at each segment:
- Use $\mathrm{Q}=\mathrm{m} \Delta \mathrm{H}$ for the phase changes
- Use $q=m c \Delta T$ for the temperature changes)

5. Solve each segment of the problem
6. Make sure all the energies are in the same units (kJ!!)
7. Add up the energies to get your final answer

How many joules are required to heat 200 grams of water from $25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$? The heat capacity of steam is $1.87 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

Temp change	state of water	Formula to use	Heat change (KJ) $\quad \mathbf{K J = 1 0 0 0 J}$
$25^{\circ} \mathrm{C}$ to 100 ${ }^{\circ} \mathrm{C}$	Liquid	$\mathbf{q}_{1}=\mathbf{m \times C \times \Delta T}$	
$100^{\circ} \mathrm{C}$	Liquid \rightarrow Gas	$\mathbf{Q}_{2}=\mathrm{m} \Delta \mathbf{H}_{\text {vap }}$	
$100^{\circ} \mathrm{C}$ to 125 ${ }^{\circ} \mathrm{C}$	Gas	$\mathbf{q}_{3}=\mathbf{m \times C \times \Delta T}$	

How many KJ are given off when 120 grams of water are cooled from $25^{\circ} \mathrm{C}$ to $-25^{\circ} \mathrm{C}$? The heat capacity of ice is $2.1 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.

Temp change	state of water	formula	Heat change (KJ)
$25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$	Liquid	$\mathbf{q}_{1}=\mathrm{mxCx} \Delta \mathbf{T}$	

How many KJ are required to heat 45 grams of water from $45^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$?

Temp change	state of water	formula	Heat change (KJ) 1 KJ=1000J
			Total

How many KJ are required to cool 800 grams of water from $76{ }^{\circ} \mathrm{C}$ to $-1^{\circ} \mathrm{C}$? Is this process exo or endothermic?

Temp change	state of water	formula	
			Total

More Combination Problems - Side A

1. How many KJ are required to heat 45 grams of water from $-5^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$? Is this process exothermic or endothermic?
2. How many kilojoules of heat are required to change the temperature of $246 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ from $45^{\circ} \mathrm{C}$ to $123^{\circ} \mathrm{C}$? Is this process exothermic or endothermic?

More Combination Problems - Side B

3. How much heat energy is needed to raise the temperature of 50.0 grams of ice at -10.0 C to form steam at 120.0 C ?
4. Calculate the amount of heat lost by 120.0 grams of steam at 150.0 C to form ice at -15.0 C .
