Unit 9 Study Guide:

Name
Per
Solutions, Concentrations, Dilutions, Acids \& Bases

1. Complete the table below for Acids \& Bases:

	Acids	Bases
PH range		
taste		
properties		
List 5 or more examples		
Arrhenius definition		
Bronsted-Lowry definition		
Ways we identified these in the lab (experiments we performed and observations we saw)		

2. When you mix an acid with a base, what is formed? What is this reaction called?
3. Explain what acid rain is, where it has an impact, and why international agreements are important.
4. What are the formulas for Molarity and molality?
5. What letters (uppercase or lowercase?!) do we use to represent Molarity? \qquad molality? \qquad and \qquad
6. How did you determine the amount of powder and the amount of water needed to make the 3 Kool-Aid concentrations?
7. How would you make 300 mL of a 1.5M Kool-Aid solution? The molecular formula for Kool-Aid is $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$.
8. How would you dilute this solution (from \#7 above) to 1.0 M ?
9. What is the Molarity of a solution that contains 100 g Sodium Chloride (NaCl) dissolved in 458 mL water?
10. What is the molality of a solution that contains 8 moles of solute dissolved in 1280 g solvent?
11. How many moles of ammonia are in 650 mL of a 2.3 M solution?
12. What is the volume of a 8.9 M solution that contains 7 moles of solute?
13. How much water needs to be added to 25 L of a 6 M solution to dilute it to 4.5 M ?
